Increased dietary NaCl induces renal medullary PGE2 production and natriuresis via the EP2 receptor.
نویسندگان
چکیده
A high-NaCl diet induces renal medullary cyclooxygenase (COX)2 expression, and selective intramedullary infusion of a COX2 inhibitor increases blood pressure in rats on a high-salt diet. The present study characterized the specific prostanoid contributing to the antihypertensive effect of COX2. C57BL/6J mice placed on a high-NaCl diet exhibited increased medullary COX2 and microsomal prostaglandin E synthase1 (mPGES1) expression as determined by immunoblot and real-time PCR. Cytosolic prostaglandin E synthase and prostacyclin synthase were not induced by the high-salt diet. Immunofluorescence showed mPGES1 in collecting ducts and interstitial cells. High salt increased renal medullary PGE(2) as determined by gas chromatography/negative ion chemical ionization mass spectrometry. The effect of direct intramedullary PGE(2) infusion was examined in anesthetized uninephrectomized mice. Intramedullary PGE(2) infusion (10 ng/h) increased urine volume (from 3.3 +/- 0.6 to 9.5 +/- 1.6 mul/min) and urine sodium excretion (0.11 +/- 0.02 to 0.32 +/- 0.05 mueq/min). To determine which E-prostanoid (EP) receptor(s) mediated PGE(2)- dependent natriuresis, EP-selective prostanoids were infused. The EP(2) agonist butaprost produced natriuresis (from 0.06 +/- 0.02 to 0.32 +/- 0.05 mueq/min). The natriuretic effect of intramedullary PGE(2) or butaprost was abolished in EP2-deficient mice, which exhibit NaCl-dependent hypertension. In conclusion, a high-salt diet increases renal medullary COX2 and mPGES1 expression, and increases renal medullary PGE(2) synthesis. Renal medullary PGE(2) promotes renal sodium excretion via the EP2 receptor, thereby maintaining normotension in the setting of high salt intake.
منابع مشابه
Prostaglandin E2 induces chloride secretion through crosstalk between cAMP and calcium signaling in mouse inner medullary collecting duct cells.
Under conditions of high dietary salt intake, prostaglandin E2 (PGE2) production is increased in the collecting duct and promotes urinary sodium chloride (NaCl) excretion; however, the molecular mechanisms by which PGE2 increases NaCl excretion in this context have not been clearly defined. We used the mouse inner medullary collecting duct (mIMCD)-K2 cell line to characterize mechanisms underly...
متن کاملRole of renal medullary heme oxygenase in the regulation of pressure natriuresis and arterial blood pressure.
Recent studies have demonstrated that inhibition of renal medullary heme oxygenase (HO) activity and carbon monoxide (CO) significantly decreases renal medullary blood flow and sodium excretion. Given the crucial role of renal medullary blood flow in the control of pressure natriuresis, the present study was designed to determine whether renal medullary HO activity and resulting CO production p...
متن کاملActivation of purinergic receptors (P2) in the renal medulla promotes endothelin-dependent natriuresis in male rats.
Renal endothelin-1 (ET-1) and purinergic signaling systems regulate Na(+) reabsorption in the renal medulla. A link between the renal ET-1 and purinergic systems was demonstrated in vitro, however, the in vivo interaction between these systems has not been defined. To test whether renal medullary activation of purinergic (P2) receptors promotes ET-dependent natriuresis, we determined the effect...
متن کاملEP2 receptor mediates PGE2-induced cystogenesis of human renal epithelial cells.
Autosomal-dominant polycystic kidney disease (ADPKD) is characterized by formation of cysts from tubular epithelial cells. Previous studies indicate that secretion of prostaglandin E2 (PGE2) into cyst fluid and production of cAMP underlie cyst expansion. However, the mechanism by which PGE2 directly stimulates cAMP formation and modulates cystogenesis is still unclear, because the particular E-...
متن کاملImmunolocalization of the four prostaglandin E2 receptor proteins EP1, EP2, EP3, and EP4 in human kidney.
Four prostaglandin E2 receptor subtypes designated EP1, EP2, EP3, and EP4 have been shown to mediate a variety of effects of prostaglandin E2 (PGE2) on glomerular hemodynamics, tubular salt and water reabsorption, and on blood vessels in the human kidney. Despite the important role of renal PGE2, the localization of PGE2 receptor proteins in the human kidney is unknown. The present study used a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 295 3 شماره
صفحات -
تاریخ انتشار 2008